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The distortion of a uniform magnetic field, aligned with the flow at infinity, by 
the potential flow of an inviscid conductor about a circular cylinder is determined. 
Potential flow of the fluid occurs when the interaction parameter is small; 
this is the case studied here. In  the flow-potential and stream-function plane the 
problem may be formulated as a singular integral equation. Solutions of this 
equation show that for small fluid conductivities the magnetic field lines are 
distorted in the sense of being dragged along by the motion of the fluid. This 
process continues as the conductivity increases, with fewer and fewer of the 
magnetic field lines entering the body. For large conductivity this reduced flux 
of field lines enters over most of the body surface and exits in the neighbourhood 
of the rear stagnation point; behind the body there is a jet-like structure of 
magnetic field lines. 

1. Introduction 
When an inviscid, incompressible, and electrically conducting fluid flows 

past a body in the presence of a magnetic field, the only modification of the flow 
equations is the inclusion of the electromotive body force in the momentum 
equation. This force is proportional to the product of the current generated by 
the distortion of the magnetic field with the square of the Alfvbn number, i.e. 
the ratio of the Alfvbn speed to the flow speed. Since the current generated by 
this distortion is proportional to the magnetic Reynolds number, the additional 
body-force term, the Lorentz force, is proportional to an interaction parameter 
which is the product of the square of the Alfvbn number with the magnetic 
Reynolds number. In  dimensional quantities this parameter is essentially 
the product of the square of the magnetic field strength with the conductivity 
of the fluid. 

This paper treats the flow of such a fluid when this interaction parameter is 
small. We consider flow past a two-dimensional body that is symmetrical about 
the uniform flow direction in the presence of a magnetic field aligned with the 
flow a t  infinity. Since the interaction parameter is small, the flow field is con- 
sidered to be the usual potential flow. This flow, however, causes a modification 
in the magnetic field that is the order of the magnetic Reynolds number or one, 

36 Fluid Mech. 22 



562 R. Xeebass and K.  Tamada 

whichever is smaller. The appropriate Green’s function is used to formulate a 
singular integral equation for the distribution of the magnetic field strength on 
the surface of a circular cylinder. The solution of this equation then determines 
the magnetic field throughout the flow field as well as inside the body. Tamada 
(1961 a, b, 1964) and Leonard (1962) have considered such flows by quite different 
methods. For example, in the case of a highly conducting fluid in the presence 
of a weak magnetic field, Tamada has found the approximate distribution of 
the magnetic field through recourse to the Sears (1961) boundary-layer approxi- 
mation and a similarity solution.? This boundary-layer solution exhibits a 
singular behaviour at the trailing edge which is attributable to a failure of the 
boundary-layer approximation. Such singular behaviour is removed here by our 
more rigorous treatment. Tamada has also found the solution for the flow of a 
slightly conducting fluid past a circular cylinder under Oseen’s approximation. 
In  this case the exact result obtained in this paper differs only in the higher- 
order terms from the earlier result. Leonard has constructed solutions for a 
circular cylinder in a channel by relaxation techniques. His results are quali- 
tatively similar to those obtained here. He also carries out the first iteration on 
the velocity field by the same technique. 

2. Formulation 

tinent equations in non-dimensional form are 
For the two-dimensional motion of an iiicompressible conducting fluid the per- 

v.q = 0,  (1) 

(2) q . V ( V x q )  = __ pH’ H . V ( V x H )  = A2H.V(VxH) ,  
47Tp u2 

and 

V . H  = 0, 

V x H = aTlL(q x H) = R,(q x H). 
(3) 

(4) 

Here q and H are the velocity and magnetic field vectors non-dimensionalized by 
the magnitude of their values U and H,(UI IH,) a t  infinity; p, p, and a are the 
density, magnetic permeability, and electrical conductivity, and L is a typical 
body dimension. The magnetic Reynolds number R, and the Alfv6n number A 
are defined by the above equations. Combining the curl of the momentum equa- 
tion (2) with Ohm’s law (4) we see that, when the interaction parameter A2Rm 
is small, we may neglect the effect of the magnetic field on the flow and take the 
velocity field to be simply that of the potential flow q,, past the body. With this 
simplification and upon introducing the magnetic stream function Y, we find 

(5 )  
from equation (4) that 

outside the body. Inside the body, when there is no applied electric field, Y 
is harmonic. Thus our problem is to find a solution of equation (5) outside the 
body that is harmonic inside the body and satisfies the condition that H must 
be continuous across the surface of the body. 

A referee has called the authors’ attention to the paper by Hocking (1961) in which a 
similar problem has been treated. Hocking considered the flow of a highly conduct,ing 
fluid past a cylinder weakly magnetized as a dipole. 

V2Y - qo . vyr = 0 
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The dependence of equation ( 5 )  on the specific body, that is on go, may be 
removed by introducing as independent variables the potential x and stream 
function y for the flow go. These peculiar designations have been chosen because 
we shall be mainly concerned with the (x, y)-plane. In  terms of our new variables, 
(5) becomes Oseen’s equation 

The Jacobian of the mapping vanishes only a t  stagnation points. Under this 
mapping the region outside the body is mapped onto the (x, y)-plane and the 
body into the slit y = 0 with a length that is simply the change in potential from 
the leading to the trailing edge. We may normalize the potential so that this 
change is 2; thus the body is mapped into the slit y = 0, 1x1 < 1. The mapping is 
of course double-valued, with the interior of the body also being mapped onto 
the (x, y)-plane, the upper half of the body going into the lower half plane. The 
region of the lower half plane that is the map of the interior of the body depends 
upon the shape of the body. For a circular cylinder this region is the entire half 
plane, and we shall restrict our attention to  this case. For other shapes, our 
method of solution is still applicable in principle; however, for any given body 
the actual details depend critically upon this mapping. 

Because the problem is symmetrical about the axis of the body we consider 
the mapping of the upper half of the physical plane onto the full (x,y)-plane: 
the upper half of the flow field is mapped onto the upper half plane, the upper 
half of the body onto the lower half plane. If we let Y* be the values of Y in the 
upper and lower half planes, then our problem may be reformulated as 

V2Y- = 0, (y < 0). 

The condition of continuity of the magnetic field across the surface of the body 
in the transformed plane is simply that Y and its derivative with respect to y 
be continuous across the slit. 

We propose to formulate the problem as an integral equation via the appro- 
priate Green’s functions. To do this we introduce the magnetic stream functions 
$f:Y+ = y+$+, Y- = $-. Note that $ is not the perturbed magnetic stream 
function in the physical plane; it does, however, vanish in both planes at large 
distances from the body. Thus we may formulate the problem as follows: 

a z p  a”+ a$+ 
ax2 ay2 ax 

a2$- a2$- 

-+---R,- = 0, (y > 0) ,  

= 0, (y < 0). xF+zy” 
These equations are subject to the boundary conditions 

$+= $-= O on y =  0, 1x1 2 
$ * + O  as x2+y2+oo, 

$+=+I’-, % - - = 1  a$- a$+ on y=O,  
a Y  

1, 

1x1 < 1. 
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By transforming the dependent variable in Oseen’s equation we can obtain 
Helmholtz’s equation. Under the prescribed boundary conditions the appro- 
priate singular solution is the zeroth-order modified Bessel function of the second 
kind. Applying Green’s formula we may then deduce the appropriate Green’s 
function. The results are 

and of course for k = 0, 

(7) 

where k = &Rm, f is a dummy variable, f([) is the unknown value of $([, 0) 
for It] < 1, and K ,  is the modified Bessel function of the first order. The boundary 
condition $ 1  -el = 1 (1x1 < l) ,  (8) 

results in an integral equation forf’([). In  their present form the derivatives of 
equations (6) and (7 )  with respect to y do not exist. We may overcome this 
difficulty simply by integrating both equations by parts. Because $*( ? 1 , O )  = 0 
only the integrals remain. We may now perform the required differentiation and 
take the limit of the resulting expressions as y tends towards zero; applying the 
boundary condition (8) we find 

II=o a!! y=o 

Observing that the terms in the curly bracket are a perfect differential, we obtain 
the equation for f ’(6) by integrating by parts. Quadrature of the solution to the 
resulting singular integral equation, 

and the formulas (6) and (7 )  provide the solution for the magnetic stream 
function, both inside and outside the body. 

The integral equation (9) appears insoluble in full because of the complicated 
nature of the kernel. In  the next two sections we obtain the appropriate analytical 
solutions for small and large values of magnetic Reynolds number. We conclude 
with a numerical solution, valid for small and moderate values of the magnetic 
Reynolds number, that substantiates our analytical solutions. 

3. Small magnetic Reynolds number 
When the magnetic Reynolds number is small our requirement that the inter- 

action parameter be small is automatically satisfied for moderate values of the 
magnetic field strength. We separate the equation (9) into its singular and non- 
singular parts, and introduce the function 
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Upon inverting the singular part of the equation there results 

where I? is a constant that is determined by the requirement f (  1) = 0. Quadra- 
ture of equation (10) shows that I’ = 0. When this equation forf’(5) is substituted 
into the definition for F(x)  and a permissible change is made in the order of inte- 
gration, we obtain a Fredholm equation of the first kind, 

1 1  
(11) F(4+sj-1F(11) J(1-11Wk; %“)a11 = 1 7  

where 1 is the function 

Kl(k1x-- iJ)-  1 
~ . ~ _ _ _  

x-6 m; 1 1 9 4  = 

To obtain a solution for small k we expand the integrand of I for small k(x - 6). 
The resulting integrals may then be evaluated by contour integration. Integra- 
tion is facilitated by introducing the angular co-ordinates: 

x =  -cosa,  g = -  cos e, 11 = - cosp. 

In this notation equations (lo),  (ll), and (12) become 

I‘(X3; p, a )  = I ( k ;  - cos p, - cos a).  

For small k we find 

r ( k ;  p, a )  = 4 nk2($ - y - log ik) - k( 1 - 4k cos a) 1; - + O(k3 log k), 

where 

ae cos no log 2lcos 8 - cos a1 
cos e - cos p 

____ ___ 

m cosma 
sin@ z1 7 - - -__ [sin (m + n) /3 + sin (m - 12) PI, 

y is Euler’s constant, and m and n are integers. Note that the partial derivative 
of I: with respect to a in integral form vanishes, but that the same operation 
must not be applied to the sum. This is clear from the graph of 1; as a function of 
a for fixed p. The function I; is the step function that jumps from a value of 
n(p - n) (sinP)-l for a < ,B to np (sinP)-l for a > p; the derivative is everywhere 
zero except at p. 
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Substituting the integral 1 into (14) we then obtain 

cm cos ma m 

I: 
m=l  m 

k2 O0 cos ma 
-- Z: ( c m + l + C m - 1 ) 7  +o(k310gk), 

4nrn=1 

where c, = /:F(p)sinpsinnpd/3 (n = 0 ,1 ,2  ...I. 

Multiplying both sides of the above equation by sin a sin na and integrating from 
0 to 7~ we find 

and for n > 1 

Clearly c ,  = 0(kn-l), and we may replace the c,’s on the right-hand sides of 
equations (16) and (17) by lower-order approximations to compute the c,’s 
correctly to any given order. For example, in (16) we may replace c, by &r 
on the right-hand side with an error of O(k4log k) in cl. Thus we may compute the 
required c,’s to find 

We are now in a position to computef’(6) by using equation (13); the required 
integrals may be evaluated by contour integration around the unit circle. 
Quadrature with respect to 6 yields the solution 

f(6) = s i n ~ + ~ ( ~ l o g k ) .  (18) 

Consider the case of a circular cylinder with radius 1, a flow with U = 1, 
and a magnetic field with H, = 1. Under our mapping to the (s,y)-plane the 
cylinder is mapped into a slit of length 4. Thus the distribution of the magnetic 
field on the surface of the cylinder may be obtained by multiplying equation (18) 
by two and replacing k by R,; this effectively shrinks the slit length to 2 .  The 
angular variable 6 is to be interpreted as the polar angle measured from the for- 
ward stagnation point. The result (18) is in agreement with the earlier result 
of Tamada ( 1 9 6 1 ~ )  to O(R&logR,); a discrepancy in the term O(Rh) is attri- 
buted to  the Oseen approximation made in the earlier paper. The change in the 
total magnetic flux entering the cylinder is 

Rk R, Rg 
8 4 144 

-log-+- (18y-t 19). 

For R, = + the flux entering the body is decreased by approximately 44% 



Distortion of a magnetic $field by $ow 567 

The magnetic-field distribution inside the body, which may be computed 
from equation (7), or more conveniently in this example from Poisson's formula, 
is given by 

+ - r  Rl 3 sin30+O(R3,logRm). 
48 

Outside the cylinder the magnetic stream function may be computed by using 
equation (6) and transforming the results to the physical plane. Figure 1 is a 
sketch of the magnetic-field distribution for R, = $. 

FIGURE 1. Magnetic field for small R,. 

4. Large magnetic Reynolds number 
As the magnetic Reynolds number increases, more and more of the magnetic 

fie,ld will be convected with the fluid, and, in a sense, dragged out of the body by 
the motion of the highly conducting fluid about the body. Indeed, for large 
R,, the total magnetic field inside the body is O(R;*) of that which would pass 
through the body if the fluid were non-conducting. With the magnetic Reynolds 
number large it is necessary that the magnetic-field strength be very small, 
A2, = o(R;l), for the interaction parameter to be considered negligible through- 
out the flow. 

Here it is more expedient to work with the singular form of the integral equa- 
tion, which we rewrite for convenience as 

y1 f ' ( g ) x ( x - g ) d g  = 1, = -1 

where X ( u )  = ~-1+kek?t[sgn(u) K,(klul) +K,(kJul)]. (20) 
Apart from a few special kernels, equations of the form (19) cannot be inverted 
by techniques now available. However, if the interval of definition in equation 
(19) were semi-infinite, then the equation would be amenable to treatment by 
the Wiener-Hopf technique. If we remove the normalization of the change in 
velocity potential introduced earlier, and take this change to be L ( L  is the inte- 
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gral of the velocity on the body over the upper or lower surface), and if we 
change variables from (x, 6 )  to y = 4 Lk(x+ l),  = $Lk(t + l), then (19) becomes 

With Lk -+ co, but k fixed, this becomes a Wiener-Hopf problem for the magnetic 
field inside a semi-infinite body. If k - t  00 with L fixed, the only solution is 
f’(r) = 0. For the semi-infinite body, the integral of the solution to equation (21) 
is 

This result is obtained from a straightforward application of the Wiener-Hopf 
technique to (21) with kL = 00 ; the Fourier transform of the kernel can be 
factorized by inspection. The result (22) shows that the magnetic field continues 
to enter the body over its entire length. For a finite body we can expect this 
solution to be valid near the leading edge. 

lo-Z2(u) 

------ lo-2x(u) 

FIGURE 2. Comparison of approximate and exact kernels. 
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With the exception of one sign, the kernel (20) is the same as the kernel that 
occurs in the problem of Oseen flow past a flat plate; here in contradistinction 
to the Oseen problem, the singular terms add. Although there is no asymptotic 
expansion of the kernel for large k which is uniformly valid for all u, the first two 
terms in the asymptotic expansion for X ( u )  leads to a useful approximate 
kernel 2°C) 

2 ( u )  = u-I+ d(nk/2lul) [sgn (u) + 11. 

This approximate kernel is compared to the full kernel in figure 2 .  It has the 
property of being an asymptotically valid approximation to S ( u )  for all 
u > ~ ( k )  > 0. The power-series expansion of X ( u )  for small values of ku shows 
that ~ ( k )  = O(k-1). Furthermore, g ( u )  retains the correct singular behaviour 
as u -+ 0:  $(u) -+ &K(u), A comparison of the integrals of these two kernels 
over the interval [ - 1,1] (for the necessary asymptotic expansions see Luke 
1962) shows that 

the first term on the right-hand side being the integral of $(u). The Cauchy 
principal value makes the error for small u inconsequential. 

The approximate kernel $(u) is correct to second order in k-4 except in the 
neighbourhood of IuI < O(k-1). If a term is includedthat corrects the approximate 
kernel so that it has the proper behaviour as u + 0, then one can show that the 
solution is unaffected to second order. Since the approximate kernel is correct 
only to this order, and further terms in the asymptotic expansion make the 
integral divergent, there is no rationale in making such a correction. 

We proceed under the assumption that for large k the replacement of X ( u )  
by 2 ( u )  in equation (19) is valid to second order. This reduces the problem to the 
solution of the integral equation 

Equation (23) is deceptively simple in appearance; both integrals can be inverted 
separately, and one might presume that a simple inversion exists for all k .  How- 
ever, difficulties are soon encountered, e.g. the related Fredholm equation has 
an elliptic function for its kernel. Because the equation is appropriate to the 
problem at hand only for large k ,  and even then only to second order, we use the 
iteration scheme f(() = f&) + fl(() + . . . , where fi(() and fi(6) are determined by 
inversion of the Abel integral equations 

and 
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The first two iterations can be carried out in closed form. Omitting the somewhat 
cumbersome details, we find the distribution of the magnetic stream-function 
along the slit in the transformed plane to be 

where z = - cos a,  and the B, are the Bernoulli numbers. 
The first term of this result is just that obtained with recourse to a similar 

solution of the magnetohydrodynamic-boundary-layer equations (Tamada 
1961 b, 1964), and is identical to the leading-edge solution (22). Equation (24) 
represents a slight improvement (when compared to numerical results) over (22). 
However, the solution (24) has the perverse property of not vanishing at the end 
of the slit. In  fact, 

f(n) = __-- 2G* + O(k-f) ,  
,/(nk) n2k 

where G* is the alternating series of reciprocals of the odd numbers: G* E 0.916. 
Thus the distribution of the magnetic stream-function does not vanish at the 
rear stagnation point; there is a singularity in the magnetic-field strength 
there since, by symmetry, the zero streamline must pass through both of the 
stagnation points. Because of this singularity, the proposed iteration procedure 
fails near the trailing edge, and we must modify our solution there. 

Except in the neighbourhood of the rear stagnation point, our leading-edge 
solution (24) is valid. To this solution, fL(z), we must match a solution fT(x) 
valid for x - 1 = o( 1) .  To obtain the required solution,? we transform from (x, 5) 
to ( t ,  7) co-ordinates, where k(x- 1) = t ,  and k(5- 1) = 7. Under this transforma- 
tion equation ( 19) becomes 

If we take the limit k .+ 00, we then have an equation amenable to solution by 
the Wiener-Hopf technique 

To carry out the solution, we define the functions 

where h(t) is an unknown function, and re-write equation (25) as 

t The authors are indebted to a referee for a suggestion that resulted in an improvement 
in our results for the trailing-edge region. 
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We then apply the Fourier transformation, defined here as 

&(p) = Im ~ ( t )  e-iP"t, 
--m 

to equation (26) to obtain 

57 1 

where B is a small positive real quantity. 
The function i?(p) is analytic in the upper half of the p-plane, while &(p) 

is analytic in the lower half of the p-plane. Factorization of the function multi- 
plying Q(p) may be carried out by inspection, with the result 

In  this expression the left-hand side represents a function which is analytic in 
the upper half of the p-plane; the right-hand side represents a function analytic 
in the lower half of the p-plane. Together both sides represent by analytic con- 
tinuation the same function, which is analytic everywhere except on the real 
axis and at  infinity. Anticipating that G ( t )  - ( - t)-* as t -+ 0, we require 

Q(p) wp-4 as p -+m 

and therefore take this function to be a constant B. The inversion of o ( p )  then 

where the cut along the negative imaginary axis of the p-plane is prescribed to 
make the integrand single-valued. A simple change in variables then reduces 
this integral to the inversion of (p)*, with the result 

f l  

where C is a constant replacing a complex number times B. Since f & ( t )  = G(t)  
for t < 0, we obtain the distribution of the magnetic stream-function by quadra- 
ture of the above result and usingf,(O) = 0 

f T ( t )  = ~C((-t)-g(l-eZ"-J(~lr)erf J c - ~ t ) ) .  

As t --f - 00, we requiref,(t) +fL(l). This completes the solution by determining 
C. In  terms of x, the trailing-edge solution is 

The two solutionsf,(x) andf,(x) for various values of k are shown in figure 3. 
To estimate the extent of the trailing-edge region we find the value of x, for which 
the two solutions are equal. For large k, and hence small values of 1 -x, the 
result is 1 - x = 2(7rk)-4, the correct matching coming from the condition 
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(1 - x) k 9 1. Because of the square-root singularity in the mapping back to the 
physical plane, the extent of this region for bodies with a blunt trailing edge is 
O(R;*) in the physical plane. 

Inside the body, but away from the rear stagnation point, the magnetic-field 
strength is clearly O(R;h) of that at largedistances from the body; the tangential 
and normal components of the field at  the surface are also O(R;& H,). However, 
bodies with blunt trailing edges will have a magnetic-field strength that is 
O(Hm)  at the trailing edge in the physical plane. This last result is a consequence 
of two facts: the component of the magnetic field normal to the body in the 

k = m  
100 
10 
5 

- 1.0 0 1 *o 
z 

FIGURE 3. Leading- and trailing-edge solutions for the distribution of the magnetic 
stream-function along the slit in the (2, y)-plane with R,, large. 

physical plane is - qo f'(x); for the blunt trailing edge qo = O(J( 1 - x)} as x -+ 1. 
The form of our results for large R, corroborates the inviscid boundary-layer 
theory of Sears (1961). One may easily deduce from equation (6) that for 
y = O(lC-l) thedifference between the magnetic stream-function and thepotential- 
flow stream-function is O(k-g), except in the neighbourhood of the rear stagnation 
point. For values of y larger than O(E-3) this difference becomes exponentially 
small with y. Furthermore, the upstream influence of the boundary layer is 
also exponentially small. On the body the current J is given by 

where 2, y" are Cartesia,n co-ordinates in the physical plane. Note that for large 
R,, J = O ( R i )  near the body. 

Because of the concentration of magnetic field lines in the neighbourhood of 
the rear stagnation point, we can expect a jet-like distribution of magnetic field 
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lines behind the body. This structure may be computed from equation (6). 
For large k and with y = o(x - l ) ,  the first-order result is 

where z& = ky2/2(x y). The first term represents magnetic field lines which are 
coincident with the streamlines, and the second term the slightly increased 
flux of field lines in the wake. In  equation (29) we have taken into account only 
the distribution fo(x). The trailing-edge distribution modifies this result by a 
term is O(k-iY!$) and has beenneglected. This jet-like structure was first pointed 
out by Tamada (1  961 b). 

c 

- 
P 

FIGURE 4. Magnetic field for large 22,. 

We again give the results for a circular cylinder of unit radius: k is to be inter- 
preted as R, in order to shrink the slit length to 2, and COS-~( -x) as the polar 
angle measured from the forward stagnation point. The magnetic field about the 
body may be computed by using the composite distribution 

Figure 4 shows the magnetic field computed from equation (6) for R, = 100. 
Inside the body the field lines are nearly straight. Except in the wake behind the 
body the magnetic field lines are coincident with the potential flow streamlines 
at a distance of one or more body radii. In  the wake this adjustment occurs 
more slowly, and requires in the order of ten body radii. The largest deviations 
occur, of course, in the neighbourhood of the rear stagnation point. Except for 
this region, computed profiles of the component of the magnetic field parallel to 
the body He exhibit the expected boundary-layer structure near the body: 
H0 = q0 except in the inviscid boundary layer where He falls off to a surface value 
that is O(Ri4). The current a t  the surface of the body is simply 

- 4R, sin2 6f’( - cos 8). 
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Behind the body the jet-like magnetic field leads to a current distribution in the 
wake. This wake current is shown at three radial distances r behind the body in 
figure 5. 

1 *5 

0 

- J l R m  
FIG~RE 5. Current distribution in the wake. 

5. Numerical solution 
We may effect a numerical inversion of the singular integral equation by 

employing our knowledge of the solution determined from the Fredholm 
inversion for small R,. Clearly this solution has the form 

The numerical procedure follows that of Stewartson (1964) for a singular integral 
equation homologous to our equation. The kernel (20) is expanded by using the 
series expansion of the Bessel functions, with the result 

1 
-X(u) = ;+k m=o 5 =I&+ m! n=O 5 (anlog21u( +bn)un), 

and @(n) is the digamma (psi) function. Series (30) and (31) are then substituted 
into the integral equation (19), and the integrations performed term by term, 
which yields a power series in x. This series must be identical to one for all x, 
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and thus we obtain an infinite set of linear algebraic equations for the unknown 

As’s m a  

2 C ASMstxt = 1. (32) 
s-0 t -0  

For numerical computation the sums in (32) are truncated at a value of s 
and t ,  say N ,  such that subsequentA,’s are negligible. The computation of the 
elements of the matrix Md is given in the appendix. Since the sums in the com- 
putation of Md are also truncated after N terms another, more stringent, require- 
ment on N is that they be convergent. 

Because of the singular nature of the kernel of the integral equation (19), 
a solution is not unique unless we prescribe an additional constraint. For: our 
problem the condition that f( 1) should be zero must be satisfied. Thus we replace 
the last of the equations (32 )  by the condition 

A’ 

s=o 
s A, M:N = 0, 

where 1 if 5 = 0, 

1. s(s-2)  ...( 2 )  

Once the A,)s have been determined we can carry out the quadrature of 
f’(x) to obtain the distribution of magnetic-field strength along the slit 

where 
x2m-1 (2m - 1) ~ 2 m - 3  (2m-1 ) (2m-3 )  ...( 3 )  +*..+ 

Zm(2m - 2) .  . . ( 2 )  

( 2 m -  1) ( 2 m - 3 )  ...( 3 )  
+ 3m(2m - 2 ) .  . . ( 2 )  

+ * * . + ( 2 m + 1 ) ( 2 m - 1 ) . . . ( 1 )  

and 
2m(2m - 2 ) .  . . ( 2 )  

Numerical computations have been carried out on a Control Data 1604 for 
values of k ranging from 0.1 to 5.0. The N’s required varied from 4 to 60. With 
k = 0.1, the values of f(x) for N = 2 (three terms) were within one-tenth of one 
percent of the values for N = 14. Although the program could accommodate 
N’s as large as 100, this was not sufficiently large to compute the solution for 
k = 10. 

Figure 6 shows the computed values off(%) for various k’s. For values of k 
less than or equal to  0.5 the results are within 5 yo of the values given by our small 
R, result (18). Unfortunately, numerical results were unobtainable for values of 
k such that (k)-# = o( 1). Nevertheless, the results for k = 6, which are also plotted 
in figure 3, indicate that our large k theory is a satisfactory one. With certain 
modifications the program could be extended beyond its present limit of N = 100. 
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With values of E of 10 or larger the elements of the matrix would vary to such 
an extent that double precision might be required to effect an accurate inversion. 
For this reason we have not attempted such modifications. 

- 1.0 0 1.0 
X 

FIGURE 6.  Computed distribution of the magnetic stream-function 
along the slit in the (5, y)-plane. 

FIGURE 7. Magnetic field for moderate R,. 

One notable result is that for distances of several radii from the body the com- 
puted magnetic field for B, = 5 is indistinguishable from our analytical results 
for R, = 100, provided we are not in the wake behind the body. Since at these 
distances from the body our analytical solution for the magnetic stream-function 
with R, = 100 coincides with the potential flow stream-function, we can con- 
clude that even at moderate values of R, the magnetic field lines follow the 
streamlines except in the neighbourhood of the body and in the wake behind the 
body. 
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Appendix 
The elements of the matrix NS, occurring in equation (32 )  are simply a bilinear 

combination of the coefficients of the expansion of the kernel and the coefficients 
of the powers of x that result from performing the integration term by term. 
Stewartson (1964) has tabulated these integrals in connexion with a numerical 
solution of a similar integral equation. The integrals which arise are: 

and 

m r-1 1 
5"(x-')mlog2~x-'~d'= r=O ( -1 )  m-r+l ( y) [Qn+m-r + %+n-r 

m+n m!(r-m- I)!  m+n 

r !  r=O 
Pn+m-rxr = cr(m, n) xr. + I ;  

r=m+l  

Here (:) are the binomial coefficients m, n = 0,1,2,  .. ., 

Undefined values of the symbols are zero. The coefficients c,(m,n) and br(m,n) 
are defined, following Stewartson, to simplify the expression for the matrix. 
Our results for these integrals agree with those of Stewartson except for a minor 
error in his values for the Q2mys. 

Finally, we may express the elements of the matrix as 

where the a,'s and br's are obtained from the series expansion of the kernel (31). 
The sum on m is, of course, truncated at the chosen value of N .  
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